MATH 112A Review: Line Integrals, Surface Integrals, Parametrization of Curves

1. Let $F(x,y)=(x^2+y^2,0)$ and consider the curve C that lies on the unit circle and $x,y\geq 0$ with counterclockwise orientation. Compute

$$\int_C F(\vec{r}) \cdot d\vec{r}(t).$$

2. Let S be the collections of points in the xy-plane that satisfy $x^2 + y^2 \le 1$. Evaluate

$$\iint_{S} F(x, y, z) \cdot d\vec{S},$$

where $F(x, y, z) = (xyz, x^4, 1)$.

3. Let S be the collections of points in the xy-plane that satisfy $0 < x^2 + y^2 \le 1$. Evaluate

$$\iint_{S} f(x, y, z) dS,$$

where $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2}}$.